Pembentukan Disakarida dan polisakarida



Pembentukan Disakarida dan polisakarida
Image result for gambar disakarida dan polisakarida


A.  DISAKARIDA
Disakarida merupakan bagian paling umum atau paling banyak terdapat di alam dari Oligosakarida. Oligosakarida berasal dari bahasa Yunani yaitu oligos=beberapa, sedikit dansaccharum=gula. Oligosakarida biasanya mengandung paling sedikit dua unit monosakarida dan tidak melebihi delapan unit monosakarida. Jika hanya mengandung dua unit monosakarida maka disebut disakarida, jika tiga unit monosakarida disebut trisakarida dan seterusnya.
Disakarida adalah karbohidrat yang tersusun dari dua molekul monosakarida yang berikatan kovalen dengan sesamanya. Pada kebanyakan disakarida, ikatan kimia yang menggabung kedua unit monosakarida disebut ikatan glikosida. Ikatan glikosida terbentuk antara atom C 1 suatu monosakarida dengan atom O dari OH monosakarida lain atau ikatan tersebut terjadi antara karbon anomerik pada satu monosakarida dan gugus hidroksil pada monosakarida lainnya.  Ikatan glikosida segera terhidrolisa oleh asam, tetapi tahan terhadap basa.
Jadi, disakarida dapat di hidrolisa menghasilkan komponen monosakarida bebasnya dengan perebusan oleh asam encer. Hidrolisis satu mol disakarida akan menghasilkan dua mol monosakarida. Berikut ini beberapa disakarida yang banyak terdapat di alam. maltosa (gula gandum),  Sukrosa (gula tebu), dan laktosa (gula susu) merupakan anggota penting dari grup disakarida. Seperti dinyatakan oleh namanya, tiap molekul gula ini terdiri dari dua satuan monosakarida.
a. Maltosa
Maltosa adalah suatu disakarida yang paling sederhana dan merupakan hasil dari hidrolisis parsial tepung (amilum) dengan asam maupun enzim. Maltosa adalah disakarida yang paling sederhana, mengandung dua residu D-gluksa yang dihubungkan oleh suatu ikatan glikosida diantara atom karbon 1 ( karbon anomer) dari residu glukosa yang pertama dan atom karbon 4 dari glukosa yang kedua.Konfigurasi atom karbon anomer dalam ikatan glikosida diantara kedua residu  D-glukosa adalah bentuk α, dan ikatan ini dilambangkan sebagai α(14 ). Unit monosakarida yang mengandung karbon anomer di tunjukan oleh nomor pertama atau lokan pada lambang ini. Kedua residu  glukosa pada maltosa berada dalam bentuk piranosa.
Maltosa adalah gula pereduksi karena gula ini memiliki gugus karbonil yang berpotensi bebas, yang dapat dioksidasi.Residu glukosa dari maltosa dapat berada dalam bentuk α maupun β, Bentuk α dibentuk oleh kerja enzim air liur amylase terhadap pati. Maltosa dihirolasi menjadi dua molekul D-glukosa oleh enzim usus maltosa, yang bersifat spesifik terhadap ikatan α(14) Disakarida selobiosa juga mengandung dua residu D-glukosa, tetapi senyawa ini dihubunkan oleh ikatan β(14). Pada maltosa, sebuah molekul glukosa dihubungkan dengan ikatan glikosida melalui atom karbonnya yang pertama dengan gugus hidroksil atom karbon keempat pada molekul glukosa lainnya.


Dari struktur maltosa, terlihat bahwa gugus -O- sebagai penghubung antar unit yaitu menghubungkan atom karbon 1 dari α-D-glukosa dengan atom karbon 4 dari α-D-glukosa. Maltosa adalah gula pereduksi karena gula ini memilki gugus karbonil yang berpotensi bebas yang dapat dioksidasi. Satu molekul maltosa terhidrolisis menjadi dua molekul D-glukosa oleh enzim usus maltose, yang bersifat spesifik bagi ikatan α(1-4).
b. Sukrosa
Sukrosa termasuk disakarida yang disusun oleh glukosa dan fruktosa. Gula ini banyak terdapat dalam tanaman. Sukrosa terdapat dalam gula tebu dan gula bit. Dalam kehidupan sehari-hari sukrosa dikenal dengan gula pasir. Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α. Sukrosa dibentuk oleh banyak tanaman , tetapi tidak terdapat pada hewan tingkat tinggi. Berlawanan dengan laktosa dan maltosa, sukrosa tidak mengandung atom karbon anomer bebas, karena karbon anomer kedua komponen unit monosakarida pada sukrosa berikatan satu dengan yang lain, karena alasan inilah sukrosa bukan merupakan gula pereduksi.

Struktur sukrosa  (α- D- glukopiranosil –β-D-fruktofuranosida)
Atom-atom isomer unit glukosa dan fruktosa berikatan dengan konfigurasi ikatan glikosilik yakni α untuk glukosa dan β untuk fruktosa. Dengan sendirinya, sukrosa tidak mempunyai gugus pereduksi bebas (ujung aldehid atau keton). Sukrosa mempunyai sifat memutar cahaya terpolarisasi ke kanan. Hidrolisis sukrosa menjadi glukosa dan fruktosa dikatalis oleh sukrase (disebut juga invertase karena menubah aktivitas optic dari putaran ke kanan menjadi ke kiri).
 c. Laktosa
Laktosa adalah komponen utama yang terdapat pada air susu ibu dan susu sapi. Laktosa tersusun dari molekul β-D-galaktosa dan α-D-glukosa yang dihubungkan oleh ikatan 1,4′-β.

Karena laktosa memiliki gugus karbonil yang berpotensi bebas pada residu glukosa, laktosa adalah disakarida pereduksi. Hidrolisis dari laktosa dengan bantuan enzim galaktase yang dihasilkan dari pencernaan, akan memberikan jumlah ekivalen yang sama dari α-D-glukosa dan β-D-galaktosa. Apabila enzim ini kurang atau terganggu, bayi tidak dapat mencernakan susu. Keadaan ini dikenal dengan penyakit galaktosemia yang biasa menyerang bayi.

B.  POLISAKARIDA
Polisakarida terdiri atas rantai panjang yang mempunyai ratusan atau ribuan unit monosakarida yang membentuk rantai polimer dengan ikatan glikosidik. Polisakarida dibedakan menjadi homopolisakarida dan heteropolosakarida. Contoh dari homopolisakarida adalah pati, dan contoh dari heteropolisakarida adalah asam hialuronat.

Struktur homopolisakarida

Struktur heteropolisakarida
Beberapa sifat polisakarida berbeda sekali dengan monosakarida atau disakarida. Sifat-sifatnya antara lain sebagai berikut :
1.     Polisakarida tidak mempunyai rasa manis
2.    Tidak mempunyai struktur kristal. Jika pun dapat larut, maka dia hanya merupakan larutan koloidal dan tidak dapat bereduksi.
3.    Polisakarida tidak dapat diragikan.
4.    Daya kelarutan dan daya reaksinya jauh lebih kecil kemungkinannya dibandingkan dengan gula-gula lainnya
5.    Polimer tepung (amilum), glikogen, dan selulosa semua terdiri atas komponn D-Glukosa, tetapi sifat kimianya, fisika, dan biologinya berlainan. Ini tidak ditentukan oleh komponen-komponen alamiahnya yang sama melainkan oleh strukturnya.
Beberapa polisakarida yang penting diterangkan di bawah ini :
1. Selulosa
Selulosa adalah polisakarida yang tidak dapat dicerna oleh tubuh, tetapi berguna dalam mekanisme alat pencernaan, antara lain : merangsang alat pencernan untuk mengeluarkan getah cerna, membentuk volume makanan sehingga menimbulkan rasa kenyang, serta memadatkan sisa-sisa zat gizi yang tidak diserap lagi oleh dinding usus.
Selulosa merupakan polisakarida yang banyak dijumpai dan ditemukan dalam dinding sel tumbuhan. Selulosa terdapat pada bagian-bagian yang keras dari biji kopi, kulit kacang, buah-buahan dan sayuran.
Selulosa merupakan polimer yang tidak bercabang, terbentuk dari β-D-glukosa (dimana monosakarida yang berdekatan) terikat bersama dengan ikatan β (14) glikosidik. Panjang ikatan bervariasi dari beberapa ratus sampai beberapa ribu unit glukosil. Dalam dinding sel tanaman, sejumlah besar selulosa terkumpul menjadi rantai silang serabut paralel dan bundel-bundel yang merupakan rantai tersendiri.

2. Chitin
Chitin merupakan polisakarida struktural ekstraselular yang ditemukan dalam jumlah besar pada kutikula arthropoda dan dalam jumlah kecil ditemukan dalam spons, molusca, dan annelida. Juga telah diidentifikasi dari dinding sel fungi. Polisakaridanya merupakan rantai tak bercabang dari polimer asetil-glukosamin dan terdiri atas ribuan unit. Bentuknya seperti selulosa. Fungsinya sebagai substansi penunjang pada insekta dan crustaceae (kepiting).
Kitin mempunyai rumus empiris (C6H9O4.NHCOCH3)n dan merupakan zat padat yang tidak larut dalam air, pelarut organik, alkali pekat, asam mineral      lemah tetapi larut dalam asam-asam mineral yang pekat. Polisakarida ini mempunyai berat molekul tinggi dan merupakan polimer berantai lurus  dengan  nama lain β-(1,4)-2-asetamida-2-dioksi-D-glukosa (N-asetil-D-Glukosamin)  (Suryanto et al., 2005).
Kitin mempunyai persamaan dengan selulosa, dimana ikatan yang terjadi antar monomernya terangkai dengan ikatan glukosida pada posisi -1,4. Sedangkan perbedaannya pada selulosa adalah gugus hidroksil yang terikat pada atom karbon nomor  2, pada kitin digantikan oleh gugus asetamida (NHCOCH3) sehingga kitin menjadi sebuah polimer berunit N-asetil-glukosamin. Struktur kitin dapat dilihat pada gambar.

3. Glikogen
Glikogen merupakan homopolisakarida nutrien bercabang yang terdiri atas glukosa dalam ikatan 14 dan 16. Banyak ditemukan dalam hampir semua sel hewan dan juga dalam protozoa serta bakteri. Glikogen merupakan cadangan karbohidrat dalam tubuh yang disimpan dalam hati dan otot. Jumlah cadangan glikogen ini sangat terbatas. Bila diperlukan oleh tubuh, diubah kembali menjadi glukosa.
Glikogen ini merupakan polisakarida yang penting sehingga lebih intensif dipelajari. Pada manusia dan vertebrata, glikogen didapat dalam hati serta otot yang merupakan cadangan karbohidrat. Glikogen dapat dengan cepat disintesis kembali dari glukosa. Glikogen terdiri atas jutaan unit glukosil. Unit glukosil terikat dengan ikatan 14 glikosidik membentuk rantai panjang, pada titik cabang terbentuk ikatan 16. Hal ini mengakibatkan terbentuknya struktur yang menyerupai pohon.  Dalam molekul tunggal glikogen hanya ada satu unit glukosa dimana atom karbon nomor 1 memegang satu gugus hidroksil. Semua gugus 1-OH lainnya terikat dalam formasi ikatan 14 dan 16 glikosidik. Gugus 1-OH tunggal yang bebas dinamakan ujung pereduksi (reducing end) dari molekul ditandai dengan R dalam gambar. Sebaliknya ujung non-pereduksi” didapat (gugus 4-OH dan 6-OH bebas) pada terminal di luar rantai.

4. Pati
Pati merupakan polisakarida yang berfungsi sebagai cadangan energi bagi tumbuhan.Patimerupakan polimer α-D-glukosa dengan ikatan α (1-4). Kandungan glukosa pada pati bisa mencapai 4000 unit. Ada 2 macam amilum yaitu amilosa (pati berpolimer lurus) dan amilopektin (pati berpolimer bercabang-cabang).Sebagian besar pati merupakan amilopektin.
Pati adalah nutrien polisakarida yang ditemukan dalam sel tumbuhan dan beberapa mikroorganisme dalam beberapa hal mempunyai kesamaan dengan glikogen (glikogen terkadang disebut dengan “pati hewani”). Beberapa sifat pati adalah mempunyai rasa yang tidak manis, tidak larut dalam air dingin tetapi di dalam air panas dapat membentuk sol atau jel yang bersifat kental. Sifat kekentalannya ini dapat digunakan untuk mengatur tekstur makanan, dan sifat jel nya dapat diubah oleh gula atau asam. Pati di dalam tanaman dapat merupakan energi cadangan; di dalam biji-bijian pati terdapat dalam bentuk granula. mempunyai diameter beberapa mikron, sedangkan dalam mikroorganisme hanya berkisar 0,5-2 mikron.Pati dapat dihidrolisis dengan enzim amylase. Pati terdiri dari amilosa dan amilopektin.
Komponen amilosa pati merupakan polisakarida tak bercabang yang terikat 14 glikosidik, terdiri atas glukosa dan beberapa ribu unit glikosil. Rantai polisakarida membentuk sebuah heliks. Amilopektin merupakan polisakarida bercabang yang mengandung ikatan 14 dan 16 unit glikosil, hal  sama seperti dalam glikogen. Tentu saja amilopektin mempunyai lebih banyak struktur terbuka dengan sedikitnya ikatan 16 dan rantai lebih panjang.

Potongan Amilosa

Lokasi terbentuknya cabang amilopektin
5. Asam Hialuronat

Asam Hialuronat merupakan heteropolisakarida dan bercabang yang terdiri atas disakarida dari N-asetilglukosamin dan asam glukoronat. Asam glukoronat terikat kepada N-asetilglukosamin pada masing-masing disakarida dengan ikatan 13 glikosidik, tetapi disakarida yang berurutan terikat 14. Asam hialuronat didapat dalam cairan sinovial persendian, vitreous humor mata, dan substansi dasar kulit.

  

 

Permasalahan

    
1. Kapan anomer pada suatu struktur dapat terjadi , beri contohnya ?
2. Mengapa sukrosa bukan gula pereduksi? (padahal fruktosa sendiri adalah gula pereduksi)
3. Apakah perbedaan dari homopolisakarida dan heteropolisakarida , jelaskan  !




Komentar

  1. Saya akan mencoba menjawab permasalahan yang ke-3. Polisakarida memilki rumus molekul (C6H10O5)n. Ada dua macam polisakarida, yaitu homopolisakarida dan heteropolisakarida. Homopolisakarida dibentuk oleh monosakarida yang sama, sedangkan heteropolisakarida di bangun oleh berbagai macam-macam monosakarida, nitrogen amino, dan sulfur.

    Contoh homopolisakarida
    1)   Amilum (zat pati), merupakan hasil fotosintesis.
    2)  Glikogen, terdapat pada sel-sel hati dan sel-sel otot
    3)  Inulin, terdapat pada sel akar tumbuhan tertentu sebagai cadangan makanan.
    4)  Lignin, terdapat pada sel xilem.
    5)  Selulosa, terdapat pada dinding sel tumbuhan tingkat tinggi dan berfungsi sebagai pelindung sel.

    Contoh heteropolisakarida
    1)  Kitin, terdapat pada kulit Arthropoda, misalnya jangkrik dan kumbang
    2)  Heparin, terdapat di dalam sel hati, sel paru-paru, dan sel dinding arteri sebagai zat antikoagulasi

    BalasHapus
  2. Saya akan mencoba menjawab permasalahan nomor satu yaitu Sukrosa bukan merupakan gula pereduksi karena sukrosa tidak mempunyai atom karbon hemiasetal dan hemiaketal. Sukrosa tidak memilliki atom karbon monomer bebas karena karbon anomer glukosa dan fruktosa berikatan satu dengan yang lain.



    Sukrosa tersusun oleh molekul glukosa dan fruktosa yang dihubungkan oleh ikatan 1,2 –α.
    Jika kita perhatikan strukturnya, karbon anomerik (karbon karbonil dalam monosakarida) dari glukosa maupun fruktosa di dalam air digunakan untuk berikatan sehingga keduanya tidak memiliki gugus hemiasetal. Akibatnya, sukrosa dalam air tidak berada dalam kesetimbangan dengan bentuk aldehid atau keton sehingga sukrosa tidak dapat dioksidasi. Sukrosa bukan merupakan gula pereduksi.

    BalasHapus
  3. Saya akan menjawab pertanyaan nomor 2
    Jawaban : Jika gugus mereduksi terlibat dalam struktur cincin hemiasetal, karbon 1 menjadi asimetrik dan ada dua isomer yang mungkin, keduanya disebut anomer. Contoh pada glukosa dikenal anomer α-D-glukosa dan β-D-glukosa

    Posisi H dan OH pada karbon anomerik disebut α atau β ditentukan dengan mereaksikannya dengan asam borat; α -glukosa bereaksi dengan cepat sedang β -g1ukosa tidak mudah bereaksi dengan asam borat. Haworth berhasil menggambarkan rumus tersebut dalam bentuk perspektif dengan atom H dan hidroksil (OH) di atas atau di bawah bidang cincin yang letaknya tegak lurus pada permukaan kertas. Ikatan-ikatan digambarkan, tebal terletak di depan, sedang yang tipis di bagian be1akang. dapat pula dijelaskan cara pemberian symbol D dan L pada heksosa yang didasarkan pada letak karbon no 6.

    BalasHapus

Posting Komentar